Impacts of Projected Changes of Emissions and Climate on Future U.s. Air Quality
نویسندگان
چکیده
Projected changes in emissions and climate will impact future air quality and related human and environmental health. In this work, an advanced online-coupled meteorology and chemistry model, the Weather Research and Forecasting Model with Chemistry (WRF/Chem), has been applied to the continental U.S. for current (2001–2010) and future (2046–2055) decades under four emission/ climate scenarios including the Representative Concentration Pathways (RCP) 4.5 and 8.5 that regulate future radiative forcing and the Technology-driven model (TDM) A1B and B2 that explicitly simulate the relationship between the socioeconomic variables and technological changes. A comprehensive evaluation has been performed for current decade using available observations from surface networks and satellites and shows an overall good performance in reproducing observations. The future decadal simulations show that future climate features with stronger radiation, higher surface temperature and planetary boundary layer height, and enhanced precipitation under all scenarios, with less warming and drier atmosphere by RCP4.5 than 8.5 and by TDM B2 than A1B. The simulations under RCP8.5/TDM A1B show the enhanced future O3 levels, which are attributed to warmer climate, higher emissions of methane (CH4) and biogenic volatile organic compounds (VOCs), and dis-benefit of nitrogen oxides (NOx) reduction in VOC-limited regime. The latter factor offsets the benefits of reduced emissions of NOx and anthropogenic VOCs. Future air quality features greater reduction in PM2.5 by RCP4.5/8.5 than TDM B2/A1B and decreased O3 over most areas by RCP4.5 and TDM B2, indicating the benefits of carbon policy and technology changes with greater emission reductions and the importance of win–win emission control strategies in mitigating air pollution and adverse climate change.
منابع مشابه
Attribution of projected changes in U.S. ozone and PM2.5 concentrations to global changes
The impact that changes in future climate, anthropogenic U.S. emissions, background tropospheric composition, and land-use have on regional U.S. ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergo...
متن کاملLinking global to regional models to assess future climate impacts on surface ozone levels in the United States
[1] We investigate the impact of climate change on future air quality in the United States with a coupled global/regional scale modeling system. Regional climate model scenarios developed by dynamically downscaling outputs from the GISS GCM are used by CMAQ to simulate present air pollution climatology, and modeled surface ozone mixing ratios are compared with recent observations. Though the mo...
متن کاملThe role of natural variability in projections of climate change impacts on U.S. ozone pollution
Climate change can impact air quality by altering the atmospheric conditions that determine pollutant concentrations. Over large regions of the U.S., projected changes in climate are expected to favor formation of ground-level ozone and aggravate associated health effects. However, modeling studies exploring air quality-climate interactions have often overlooked the role of natural variability,...
متن کاملمدلسازی اثر تغییر اقلیم بر انتشار دیاکسیدکربن خاک در مراتع خشک (جنوب ایران)
Introduction: Carbon stored in soils particularly in arid rangelands soils is the most significant carbon sink in terrestrial ecosystems. In arid rangelands, Soils have special places in both carbon sequestration and mitigate global warming. Therefore, any small change in the soil organic carbon (SOC) leads to a significant impact on the CO2 concentration in the atmosphere. Studies have shown t...
متن کاملبـررسی پتـانسیل اثـرات تغییر اقلیـم بر خشکسـالیهای آینـده کشـور با استفـاده از خروجی مـدلهای گـردش عمـومی جـو
A Study of the Potential Impact of Climate Change on the Future Droughts in Iran by Using the Global Circulation Models as Outputs Gholamreza Roshan Assistant Professor in climatology, Department of Geography, Golestan University, Gorgan, Iran Mohammad Saeed Najafi MSc Student in Climatology, Faculty of Geography, Tehran University, Tehran, Iran. Extended Abstract 1- Introductio...
متن کامل